See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/341068923

# Biofilms: Their formation and control in some food manufacturing plants and food service establishment in Egypt

Thesis · October 2019

DOI: 10.13140/RG.2.2.18067.43043

| CITATIONS |                                                                                                   | READS |  |  |
|-----------|---------------------------------------------------------------------------------------------------|-------|--|--|
| 0         |                                                                                                   | 65    |  |  |
| 1 author  | :                                                                                                 |       |  |  |
|           | Ahmed Mohamed Alhussaini Hamad<br>Benha University<br>14 PUBLICATIONS 30 CITATIONS<br>SEE PROFILE |       |  |  |

#### Some of the authors of this publication are also working on these related projects:



Molecular characterization and epidemiological tracking of antibiotic resistant Salmonella strains isolated from food and affected human patients in Qalyoubia province, Egypt View project



sustainable applications for the valorization of low-value egg protein in functional fermented dairy products View project

Benha University Faculty of Veterinary Medicine Department of Food Control



## Biofilms: Their formation and control in some food manufacturing plants and food service establishment in Egypt

A Thesis Submitted to

Faculty of veterinary Medicine

Benha University

**Presented By** 

#### Ahmed Mohamed Alhussaini Ali Abdel Rahman Hamad

(B.V.Sc., Benha University 2012)

For

The Degree of Master in Veterinary Medicine

(Meat Hygiene)

Under Supervision of

**Prof. Saad Mahmoud Saad** 

Professor of Meat Hygiene Faculty of Veterinary Medicine Benha University Prof. Hemmat Moustafa Ibrahim

Professor of Meat Hygiene and Coordinator of Food Quality Control Program Faculty of Veterinary Medicine Benha University

(2019).

## Dedicated

## ፶፹

My family and every one support me to complete this work "And he raised his parents upon the throne, and they bowed to him in prostration. And he said,
"O my father, this is the explanation of my vision of .before. My Lord has made it reality"

(QS 12:100).

## "Look beneath the surface; let not the several quality of a thing or its worth escape thee"

Marcus Aurelius Antoninus (161 A.D)

#### Contents

| No.     | Title                 | Page |
|---------|-----------------------|------|
| List of | list of Abbreviations |      |
| List of | Tables                | iii  |
| List of | Figures               | v    |
| List of | Annexes               | viii |
| List of | Supplementary data    | ix   |
| 1       | Introduction          | 1    |
| 2       | Review of literature  | 5    |
| 3       | Materials and Methods | 73   |
| 4       | Results               | 103  |
| 5       | Discussion            | 135  |
| 6       | Conclusion            | 143  |
| 7       | Recommendations       | 144  |
| 8       | English Summary       | 149  |
| 9       | References            | 154  |
| 10      | Annexes               | 208  |
| 11      | Supplementary Data    | 213  |
| 12      | Arabic Summary        | 217  |

#### List of Abbreviations

| ANOVA  | Analysis of variance                                  |
|--------|-------------------------------------------------------|
| АРНА   | American Public Health Association                    |
| ATCC   | American Type Culture Collection                      |
| AU     | Arbitrary Unit                                        |
| AWD    | Agar Well Diffusion                                   |
| C.V    | Crystal Violet                                        |
| CFS    | Cell Free Culture Supernatant                         |
| CFU    | Colony Forming Unit                                   |
| СТ     | Contact Time                                          |
| Da.    | Dalton                                                |
| DGCs   | diguanylate cyclases                                  |
| DSMZ   | German Collection of Microorganisms and Cell Cultures |
| ECM    | Extracellular Matrix                                  |
| EMB    | Eosin Methylene Blue agar                             |
| EPS    | Extracellular Polysaccharide                          |
| FCS    | Food Contact Surfaces                                 |
| GFSI   | Global Food Safety Initiative                         |
| НАССР  | Hazard Analysis and Critical Control Points           |
| ICOMOS | International Council on Monuments and Sites          |
| IDF    | International Dairy Federation                        |
| ISO    | International Organization for Standardization        |
| IU     | International Unit                                    |
| KDa    | Kilo Dalton                                           |
| LAB    | Lactic Acid Bacteria                                  |
| MIRCEN | Microbiology Resource Center                          |

| MPN   | Most probable Number                                |
|-------|-----------------------------------------------------|
| MRS   | De Man, Rogosa and Sharpe agar                      |
| MSDS  | Material Safety Data Sheet                          |
| NCCLS | National Committee for Clinical Laboratory Standard |
| NFSA  | National Food Safety Authority                      |
| OD    | Optical density                                     |
| PCR   | Polymerase chain reaction                           |
| PDEs  | Phosphodiesterase                                   |
| ppm   | Part Per Million                                    |
| QAC   | Quaternary Ammonium Compound                        |
| QS    | Quorum Sensing                                      |
| R%    | Reduction present                                   |
| R&D   | Research and Development                            |
| SS    | Stainless Steel                                     |
| V/V   | Volume per Volume                                   |
| W/V   | Weight per Volume                                   |
| WHO   | World Health Organization                           |
| XLD   | Xylose Lysine Desoxycholate                         |

### List of Tables

| No. | Title                                                                                                                                                                                                                                                             | Page |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1   | Detailed description of the designed oligonucleotide primers used                                                                                                                                                                                                 | 89   |
| 2   | PCR Mastermix for Uniplex PCR                                                                                                                                                                                                                                     | 92   |
| 3   | Temperature and time conditions of the different primers during<br>PCR                                                                                                                                                                                            | 92   |
| 4   | Statistical analysis results of total aerobic colony counts, total<br>Enterobacteriaceae count, total coliform count, and total<br>Staphylococci count (CFU/cm <sup>2</sup> ), for stainless steel and plastic food<br>contact surfaces before sanitation program | 103  |
| 5   | Statistical analysis results of total aerobic colony counts, total<br>Enterobacteriaceae count, total coliform count, and total<br>Staphylococci count (CFU/cm <sup>2</sup> ), for stainless steel and plastic food<br>contact surfaces after sanitation program  | 104  |
| 6   | Statistical analysis results of total aerobic colony counts, total<br>Enterobacteriaceae count, total coliform count, and total<br>Staphylococci count (CFU/cm2), for Mixer before and after<br>sanitation program                                                | 105  |
| 7   | Statistical analysis results of total aerobic colony counts, total<br>Enterobacteriaceae count, total coliform count, and total<br>Staphylococci count (CFU/cm <sup>2</sup> ), for Cutting board before and<br>after sanitation program                           | 105  |
| 8   | Statistical analysis results of total aerobic colony counts, total<br>Enterobacteriaceae count, total coliform count, and total<br>Staphylococci count (CFU/cm <sup>2</sup> ), for mincer before and after<br>sanitation program                                  | 106  |

| No. | Title                                                                                                                                                                                                                                   | Page |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 9   | Statistical analysis results of total aerobic colony counts, total<br>Enterobacteriaceae count, total coliform count, and total<br>Staphylococci count (CFU/cm <sup>2</sup> ), for Meat Band Saw before and<br>after sanitation program | 107  |
| 10  | Statistical analysis results of total aerobic colony counts, total<br>Enterobacteriaceae count, total coliform count, and total<br>Staphylococci count (CFU/cm <sup>2</sup> ), for Slicer before and after<br>sanitation program        | 108  |
| 11  | Statistical analysis results of total aerobic colony counts, total<br>Enterobacteriaceae count, total coliform count, and total<br>Staphylococci count (CFU/cm <sup>2</sup> ), for Knife Blade before and after<br>sanitation program   | 109  |
| 12  | Biofilm quantification for twelve <i>S. aureus</i> strains isolated in this study                                                                                                                                                       | 126  |
| 13  | Biofilm quantification for nine <i>E.coli</i> strains isolated in this study                                                                                                                                                            | 127  |
| 14  | Biofilm quantification for eight Salmonella strains isolated in this study                                                                                                                                                              | 128  |
| 15  | Reduction percent (R %) of conventional three biocides on Salmonella, <i>E. coli</i> and <i>S. aureus</i> biofilms                                                                                                                      | 129  |
| 16  | Reduction percent (R %) of Natural biocides on Salmonella, <i>E.coli</i> and <i>S. aureus</i> biofilms                                                                                                                                  | 130  |

## List of Figures

| No. | Title                                                                  | Page |
|-----|------------------------------------------------------------------------|------|
| 1   | HYDRION® Test strip used for Sanitizer concentration check             | 73   |
|     | Different food contact surfaces from different meat processing         |      |
|     | machines and equipment in examined food services establishments        |      |
| 2   | and meat processing plant A:Meat band saw, B: Mincer, C:               | 75   |
|     | Cutting board and knifes, D: Mixer and Templar, E: Bowel               |      |
|     | chopper, F: Slicer.                                                    |      |
| 3   | Scrapers that were used for the detachment of microbial biofilms       | 76   |
| 5   | from surfaces during survey part                                       | 70   |
| 4   | 50 bp DNA Ladder Ready to Load (GeneDirex)                             | 91   |
| 5   | Bacteriocins extracting by sterilized by using Seitz filter            | 99   |
| 6   | Microtitre plate before Optical Density measurement                    | 102  |
| 7   | Prevalence of Salmonella on different food contact surfaces and        | 110  |
| ,   | machines types.                                                        | 110  |
| 8   | Prevalence of S. aureus on different food contact surfaces and         | 111  |
| 0   | machines types                                                         | 111  |
| 9   | Prevalence of E.coli on different food contact surfaces and            | 112  |
| ,   | machines types                                                         | 112  |
| 10  | Prevalence of Salmonella on different machine parts                    | 113  |
| 11  | Prevalence of <i>Staphylococcus aureus</i> on different machine parts  |      |
| 12  | Prevalence of <i>E.coli</i> on different machine parts                 |      |
|     | PCR amplification of <i>InvA</i> (Amplicon size284bp) results. lanes M |      |
| 13  | 100-bp ladder; lanes 1,Control positive ;lanes                         | 116  |
|     | 3,4,5,6,7,8,9,10positive samples and lane 11 negative control          |      |

v

| No. | Title                                                                                                               | Page |
|-----|---------------------------------------------------------------------------------------------------------------------|------|
|     | PCR amplification of <i>PHOA</i> gene of <i>E.coli</i> (Amplicon size720bp)                                         |      |
| 14  | results. lanes M 100-bp ladder; lanes 1,Control positive ;lanes                                                     | 116  |
|     | 2,3,4,5,6,7,8,9 positive samples and lane 11 negative control                                                       |      |
|     | PCR amplification of <i>nuc</i> ( Amplicon size270bp ) results. lanes M                                             |      |
| 15  | 100-bp ladder; lanes 1,Control positive ;lanes 3,4,5,6,7,8,9,10, 11,                                                | 117  |
|     | 12, 13 positive samples and lane 14 negative control                                                                |      |
| 16  | Antimicrobial activity of conventional antimicrobial agents and                                                     | 118  |
| 10  | natural antimicrobial agents on Salmonella                                                                          | 110  |
| 17  | Antimicrobial activity of conventional antimicrobial agents and                                                     | 120  |
|     | natural antimicrobial agents on S. <i>aureus</i><br>Antimicrobial activity of conventional antimicrobial agents and |      |
| 18  | natural antimicrobial agents on <i>E.coli</i>                                                                       | 121  |
|     | Antimicrobial activity of conventional antimicrobial agents and                                                     |      |
| 19  | natural antimicrobial agents on <i>B. subtilis</i>                                                                  | 122  |
|     | Photographs of some petri plates used in agar-well diffusion                                                        |      |
| 20  | method. A: chitosan 1% with Nisin 106 IU; B: Chitosan 1%; C:                                                        | 124  |
| 20  | QAC 200ppm, D: iodine 2.5%; E: Bacteriocin of <i>L. acidophilus</i> 40                                              | 124  |
|     | AU; F: Chlorine 200ppm                                                                                              |      |
|     | Biofilm formation of strains of Salmonella, E.coli. S. aureus (three                                                |      |
|     | replicates) on polystyrene microtiter plate, the biofilm was stained                                                |      |
| 21  | with 0.1 % crystal violet in water. The intensity of blue color in                                                  | 125  |
|     | each well indicates the potential of each strain to form biofilm                                                    |      |
|     | under the specific conditions                                                                                       |      |

| No. | Title                                                                                         | Page |
|-----|-----------------------------------------------------------------------------------------------|------|
| 22  | Effect of conventional and natural antimicrobial agents on biofilm formed by Salmonella       | 131  |
| 23  | Effect of conventional and natural antimicrobial agents on biofilm formed by <i>S. aureus</i> | 132  |
| 24  | Effect of conventional and natural antimicrobial agents on biofilm formed by <i>E.coli</i>    | 133  |

#### List of Annexes

| Annex No. | Title                                                                                                          | Page |
|-----------|----------------------------------------------------------------------------------------------------------------|------|
| 1         | Material Safety Data Sheet (MSDS) of Conventional<br>Biocide A used (Suma Bac ® D10, Diversey; Egypt).         | 208  |
| 2         | Material Safety Data Sheet (MSDS) of Conventional<br>Biocide B used (Suma chlorine ® D44, Diversey;<br>Egypt). | 210  |
| 3         | Material Safety Data Sheet (MSDS) of Conventional<br>Biocide C used (Microclean ®, Ecolab; Egypt)              | 212  |

### List of Supplementary Data

| No.       | Title                                                | Page |
|-----------|------------------------------------------------------|------|
| <b>S1</b> | Lactobacillus enrichment on MRS broth                | 213  |
| <b>S2</b> | Cooling centrifugation for Bacteriocin separation    | 213  |
| <b>S3</b> | Seitz filter for bacteriocin sterilization           | 214  |
| <b>S4</b> | Biofilm Staining Station setup                       | 214  |
| <b>S5</b> | Machines used for sampling                           | 215  |
| <b>S6</b> | Sanitizers concentration measurement during sampling | 215  |
| <b>S7</b> | Link for Original paper used                         | 216  |

#### 1. Introduction:

Modern food processing provides an environment for biofilm formation on surfaces due to the great complexity of processing equipment (making it difficult to adequately sanitize), mass production of products, lengthy production cycles, and the vast surface areas available for biofilm development (Lindsay and Von Holy, 2006).

In the meat industry, contamination of products with foodborne pathogenic bacteria is a serious public health concern and often results in product recalls with significant financial loss. As meat consumption increases around the world, so do concerns and challenges to meat hygiene and safety (Sofos and Geornaras, 2010). Incidence of foodborne illness in public health, there are also huge economic costs, which are estimated to exceed \$50 billion annually in the United States alone (Scharff, 2012).

Meat is typically subjected to bacterial contamination at some point following the slaughter of the animal and further processing with the equipment recognized to be the primary vehicle of cross-contamination throughout the meat processing chain (Giaouris and Simões, 2018).

In situ biofilms have been recognized in meat processing environments (Gounadaki et al., 2008; Marouani-Gadri et al., 2009; Zhao et al., 2006), while several studies on the bacterial attachment to meat contact surfaces and its implication for meat contamination have been conducted (Giaouris, 2015). Biofilms can be defined simply and broadly as communities of microorganisms that are attached to a surface. A concerted effort to study microbial biofilms began only two 2 decades ago with the rediscovery that, in natural aquatic systems, bacteria are found predominately attached to surfaces (O'Toole et al., 2000a). Nearly 99% of microorganisms living on the earth live in microbial communities known as biofilms. Biofilms are formed by adhesion of bacterial cells to surfaces through an exopolymeric matrix. This matrix is important in formation and structure of the biofilm and also on the protection of the bacterial cells as it prevents antimicrobials and xenobiotics from gaining access to the cells inside the biofilm (Adetunji and Isola, 2011).

Thus, a unique feature of biofilms is that once these have been developed on food processing facility and equipment surfaces, they are difficult to eradicate, mainly due to their stable and extremely strong matrix. This covers the cells and contains EPS, such as bacterial derived exopolysaccharides and sugars, proteins, lipids, teichoic and nucleic acids, and other minor components. All these provide biofilms with mechanical stability mediate their strong adhesion to surfaces and form a cohesive, three-dimensional polymer network that interconnects and transiently immobilizes the enclosed cells (Flemming and Wingender, 2010).

Improperly cleaned surfaces promote soil build-up, and, in the presence of water, contribute to the development of bacterial biofilms which may contain pathogenic microorganisms, such as *Salmonella*, *E.coli* and *Staphylococcus aureus* (Lindsay and von Holy, 2006).

-2-

Biofilms are problematic in particular food industry sectors such as: poultry processing and red meat processing (Frank, et al., 2003; Somers and Wong, 2004; and Chen, et al., 2007).

Biofilms formed on food contact surfaces are of considerable interest in the context of food hygiene, since these may contain both spoilage and pathogenic bacteria and can result in post-processing contamination, leading to lowered shelf life of products and transmission of diseases (Giaouris and Simões, 2018).

There are several problems, not the least of which is product contamination, that occur from the formation of biofilm. Product contamination occurs from sloughing bacteria that are shed periodically by the film and can reattach on equipment somewhere else in the product flow or make their way into food product. Any company that has been involved in a recall, or whose product has been associated with an illness can attest to the fact that they are damaging to the business and extremely expensive (**Cramer, 2006**).

In recent decades, biofilm formation in the food industry by bacterial pathogens, such as Salmonella spp., pathogenic *Escherichia coli* and *Staphylococcus aureus* has attracted much attention, given that microorganisms within biofilms are protected from sanitizers, increasing the likelihood of survival and subsequent contamination of food

(Chmielewski and Frank, 2003).

Biofilms are more resistant to antimicrobials compared to planktonic cells and this makes their elimination from food processing facilities a big challenge. Moreover, the emergence of resistant bacteria to conventional antimicrobials clearly shows that new biofilm control strategies are required (Simões, et al., 2010).

Nowadays, the food hygienist and sanitarians faces a challenge in overcoming food safety problems come from formation and persistence of bacterial biofilms in food industry. As well as interest in using natural biocides and ecofriendly alternatives in food processing environments, because of the potential hazards of synthetic chemical agents both for public health and the environment. Therefore, understanding biofilms and their related issues, investigate ability of some natural biocides to control biofilm formation are steps toward controlling and solve this challenge; therefore this study was conducted to fulfill the following:

1. Isolation and identification of biofilms forming bacteria from some selected food contact surfaces in both food processing and food services establishments.

2. Confirming ability of isolated bacteria to form biofilms.

3. Study the effect of disinfectants commonly used in food processing establishments (chlorine, iodine and Quaternary Ammonium Compounds QACs) at recommended concentration at usual temperature and pH circumstances.

4. Study the effect of chitosan, nisin, chitosan/ nisin mixture and other lactobacillus bacteriocin on isolated pathogenic bacteria in both planktonic and Biofilm.

-4-